Recent advances in diffusion-based correlation modelling for global ocean variational DA

A. Weaver ${ }^{1}$, M. Chrust ${ }^{2}$, S. Gürol ${ }^{1}$, A. Piacentini ${ }^{1}$, J. Tshimanga ${ }^{1}$
${ }^{1}$ CERFACS, Toulouse
${ }^{2}$ ECMWF, Reading

December 13, 2016

CNA-2016 : Colloque National d'Assimilation de Données 2016, Grenoble, 30 novembre - 2 décembre 2016

Outline

(1) Motivation and background
(2) Implicit diffusion using polynomial-based iterative solution methods
(3) Ongoing and future developments

Outline

$\boldsymbol{\Sigma}$ CERFACS
(1) Motivation and background
(2) Implicit diffusion using polynomial-based iterative solution methods
(3) Ongoing and future developments

- Data assimilation (DA) algorithms for global ocean applications require manipulating huge covariance matrices (C).
- In variational data assimilation (VDA), C are defined by means of a matrix-vector product (covariance operator) $\mathrm{C} \psi$ for some vector ψ.
- This is the key algorithmic feature of VDA that makes it possible to account for full-rank, non-diagonal formulations of \mathbf{C}.
- Rather than defining $\mathbf{C} \psi$ through an explicit matrix-vector multiplication (which is only possible by invoking a reduced-rank approximation) or through an integral transform (e.g., spectral), we can define it as the solution of a PDE.
- This is the basic idea behind the diffusion-based approaches to covariance modelling.

Diffusion-based covariance operators

$\boldsymbol{\Sigma}$ CERFACS
We define $\mathbf{C} \psi$ to be the matrix representation of the linear operator $C: \psi \rightarrow \psi_{M}$ for $\psi, \psi_{M} \in \mathbb{R}^{d}$, given by the solution of the d-dimensional elliptic equation

$$
\begin{equation*}
(1-\nabla \cdot \boldsymbol{\kappa} \nabla)^{M} \psi_{M}=\psi \tag{1}
\end{equation*}
$$

where M is a positive (preferably even) integer, and $\boldsymbol{\kappa}$ is a scale tensor.

- Eq. (1) can be interpreted as an implicitly formulated diffusion operator acting over M pseudo-time steps of unit length, and with $\boldsymbol{\kappa}$ the diffusion tensor.
- For constant $\boldsymbol{\kappa}$, Eq. (1) admits covariance functions from the Matérn class (Guttorp and Gneiting 2006).
- The PDE can be generalized to represent a wider class of covariance functions (e.g., oscillatory).
- Eq. (1) has been studied quite extensively for ocean VDA (e.g., see Weaver and Mirouze 2013).

$$
\begin{equation*}
(1-\nabla \cdot \boldsymbol{\kappa} \nabla)^{M} \psi_{M}=\psi \tag{1}
\end{equation*}
$$

- Covariance operators based on Eq. (1) have been studied independently in fields other than DA.
- Spatial statistics (Whittle 1963; Lindgren et al. 2010; Simpson et al. 2016)
- Seismic inversion (Bui-Thanh et al. 2013)
- Uncertainty Quantification (Gmeiner et al. 2016)
- Those studies have focused on solutions with $M=2$, and discretizations using finite-element methods (see O. Guillet poster).
- The original Whittle model is actually very general, and is based on a fractional PDE (non-integer values of M). This is not practical for numerical applications.
- Example of the shape and spectrum for different M and constant κ.

- Consider the NEMOVAR hybrid \mathbf{B} formulation:

$$
\mathbf{B}=\beta_{\mathrm{m}}^{2} \underbrace{\left(\mathbf{B}_{\mathrm{m}_{\mathbf{1}}}+\mathbf{B}_{\mathrm{m}_{2}}+\ldots\right)}_{\mathbf{B}_{\mathrm{m}}}+\beta_{\mathrm{e}}^{2} \mathbf{B}_{\mathrm{e}}
$$

where β_{m}^{2} and β_{e}^{2} are constant weights.

- Multiple covariance models for representing different scales:

$$
\mathbf{B}_{\mathrm{m}_{i}}=\mathbf{K}_{\mathrm{b}} \mathbf{D}_{i}^{1 / 2} \mathbf{C}_{\mathrm{m}_{i}} \mathbf{D}_{i}^{1 / 2} \mathbf{K}_{\mathrm{b}}^{\mathrm{T}}
$$

- A localized ensemble-based correlation matrix:

$$
\mathbf{B}_{\mathrm{e}}=\mathbf{K}_{\mathrm{b}} \mathbf{D}_{\mathrm{e}}^{1 / 2}\left(\mathbf{L} \circ \widetilde{\mathbf{X}} \widetilde{\mathbf{X}}^{\mathrm{T}}\right) \mathbf{D}_{\mathrm{e}}^{1 / 2} \mathbf{K}_{\mathrm{b}}^{\mathrm{T}}
$$

where the columns of $\widetilde{\mathbf{X}}=\mathbf{D}_{\mathrm{e}}^{-1 / 2} \mathbf{K}_{\mathrm{b}}^{-1} \mathbf{X}^{\mathrm{b}}$ are transformed background ensemble perturbations.

- The localization matrix \mathbf{L} is a correlation matrix. In operator form:

$$
\left(\mathbf{L} \circ \widetilde{\mathbf{X}} \widetilde{\mathbf{X}}^{\mathrm{T}}\right) \mathbf{v}=\sum_{p=1}^{N_{e}}\left(\widetilde{\mathbf{x}}_{p} \circ \mathbf{L}\left(\widetilde{\mathbf{x}}_{p} \circ \mathbf{v}\right)\right) \quad \text { where } \quad \widetilde{\mathbf{x}}=\left(\widetilde{\mathbf{x}}_{1}, \ldots, \widetilde{\mathbf{x}}_{N_{\mathrm{e}}}\right)
$$

How to apply C?

$$
(1-\nabla \cdot \boldsymbol{\kappa} \nabla)^{M} \psi_{M}=\psi
$$

- Let \mathbf{A} be the discretized, matrix representation of the self-adjoint operator $1-\nabla \cdot \boldsymbol{\kappa} \nabla$.
- The identity $\mathbf{C}=\left(\mathbf{A}^{M}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{M}$ suggests two ways of applying \mathbf{C}.
(1) Solve the single linear, self-adjoint, positive-definite (SAPD) system

$$
\begin{equation*}
\mathbf{A}^{M} \boldsymbol{\psi}_{M}=\boldsymbol{\psi} \tag{2}
\end{equation*}
$$

(2) Solve the sequence of M linear SAPD systems

$$
\left.\begin{array}{rl}
\mathbf{A} \psi_{1} & =\psi \tag{3}\\
\mathbf{A} \psi_{2} & =\psi_{1} \\
& \vdots \\
\mathbf{A} \psi_{M} & =\psi_{M-1}
\end{array}\right\}
$$

- The linear systems in (3) are better conditioned than the linear system (2).
- Between 10^{5} and 10^{6} linear systems must be solved on a typical assimilation cycle of an ocean hybrid \mathbf{B} VDA system \Longrightarrow efficiency is crucial!

The answer to this question is problem dependent. Here, we are concerned with applications to global ocean models.

- Direct solver (Cholesky factorization,...). Accurate but memory requirements can be large, technical implementation and parallelization can be difficult.
- Multigrid solver.

Well suited for elliptic problems but difficult to design a hierarchy of grids and associated mapping operators when geometry is complex and grids are nonstandard.

- Approximate the $2 D$ operator as a product of simpler $1 D$ operators. (cf. recursive filter). Resulting algorithm involves small, easily invertible matrices but is difficult to generalize and parallelize.
- Polynomial-based iterative methods (conjugate gradient, Chebyshev iteration,...). Straightforward to implement and parallelize but possibly slow convergence.
- The $n \times 1 \mathrm{D}$ approach has some appealing properties, BUT is difficult to make anisotropic, produces numerical artefacts near complex boundaries, and scales poorly on massively parallel machines.

(a) $2 \times 1 \mathrm{D}$

(b) 2 D
- These problems, especially lack of scalability, compelled us to develop a new approach.

Outline

(1) Motivation and background
(2) Implicit diffusion using polynomial-based iterative solution methods
(3) Ongoing and future developments

- The conjugate gradient method and the Chebyshev iteration belong to this class of solvers.
- The linear system described previously can be transformed to standard form

$$
\widehat{\mathbf{A}} \mathbf{x}=\mathbf{b}
$$

where $\widehat{\mathbf{A}}$ is symmetric, positive definite (SPD).

- A polynomial-based iterative method produces, at iteration k, an estimate \mathbf{x}_{k} of the true solution $\mathbf{x}^{*}=\widehat{\mathbf{A}}^{-1} \mathbf{b}$ such that the error is

$$
\mathbf{x}^{*}-\mathbf{x}_{k}=\varphi_{k}(\widehat{\mathbf{A}})\left(\mathbf{x}^{*}-\mathbf{x}_{0}\right)
$$

where $\varphi_{k}(\widehat{\mathbf{A}})$ is a polynomial in $\widehat{\mathbf{A}}$ of degree k with $\varphi_{k}(0)=1$.

- This equation can also be expressed as

$$
\mathbf{r}_{k}=\varphi_{k}(\widehat{\mathbf{A}}) \mathbf{r}_{0}
$$

where $\mathbf{r}_{k}=\widehat{\mathbf{A}} \mathbf{x}_{k}-\mathbf{b}$ is the residual vector.

- The resulting iterative algorithms involve recurrence relations. (The orthogonal residual polynomials $\varphi_{k}(\widehat{\mathbf{A}})$ are never constructed explicitly).

Optimality properties

$$
\mathbf{x}^{*}-\mathbf{x}_{k}=\varphi_{k}(\widehat{\mathbf{A}})\left(\mathbf{x}^{*}-\mathbf{x}_{0}\right),
$$

Conjugate gradients (CG)

Choose the polynomial $\varphi_{k}=\varphi_{k}^{\mathrm{CG}}$ to be the unique solution of

$$
\min _{\substack{\varphi(0)=1 \\ \operatorname{deg}(\varphi) \leq \mathrm{k}}}\left\|\varphi(\widehat{\mathbf{A}})\left(\mathbf{x}^{*}-\mathrm{x}_{0}\right)\right\|_{\hat{\mathbf{A}}}
$$

Chebyshev iteration (CI)

Choose the polynomial $\varphi_{k}=\varphi_{k}^{\mathrm{CI}}$ to be the unique solution of

$$
\min _{\substack{\varphi(0)=1 \\ \operatorname{deg}(\varphi) \leq k}} \max _{\lambda \in\left[\lambda_{\min }, \lambda_{\max }\right]}|\varphi(\lambda)|
$$

where $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ are the extreme eigenvalues of $\widehat{\mathbf{A}}$. The resulting $\varphi_{k}^{\mathrm{CI}}$ are shifted and scaled Chebyshev polynomials.

- Convergence in at most N iterations (in exact arithmetic) where N is the dimension of \mathbf{x}.
- Often affected by round-off error $=>$ may need re-orthogonalization of residual vectors.
- Parameter-free method.
- Computation of α_{k} and β_{k} in CG involve inner products.
- Global MPI communications in a parallel domain decomposition. => a well-known performance bottleneck on massively parallel machines.
- Nonlinear solver if stopped before full convergence
$=>$ the linearity and symmetry of \mathbf{C} is no longer guaranteed.
- Convergence is not guaranteed in a finite number of iterations.
- Not seriously affected by round-off error.
- Parameter-dependent method $=>$ requires estimates of the eigenvalue bounds of $\widehat{\mathbf{A}}$.
$=>$ these can be set to the extreme Ritz values $\theta_{\min }$ and $\theta_{\max }$ pre-computed with a combined CG/Lanczos procedure.
- Computation of α_{k} and β_{k} depends on the input parameters.
- No inner products
$=>$ no global MPI communications are required.
$=>$ local MPI communications are needed before each application of $\widehat{\mathbf{A}}$.
- Strictly linear solver
$=>$ linearity of \mathbf{C} is guaranteed even for a finite number of iterations.
$=>$ exact symmetry of \mathbf{C} can be enforced numerically using a factored formulation of $\mathbf{C}=\mathbf{U} \mathbf{U}^{\mathrm{T}}$ and a fixed number of iterations (K).

Chebyshev Iteration

- $\sigma=\left(\theta_{\text {max }}+\theta_{\text {min }}\right) / 2$
- $\delta=\left(\theta_{\text {max }}-\theta_{\text {min }}\right) / 2$
- $\alpha_{0}=1 / \sigma \quad ; \quad \beta_{1}=\left(\delta \alpha_{0}\right)^{2} / 2$
- for $k=1, \ldots, K-1$ do

$$
\begin{aligned}
& \alpha_{k}=1 /\left(\sigma-\beta_{k} / \alpha_{k-1}\right) \\
& \beta_{k+1}=\left(\delta \alpha_{k} / 2\right)^{2}
\end{aligned}
$$

- end for
- $\mathrm{x}_{0}=$ initial estimate
- $\mathbf{r}_{0}=\widehat{\mathbf{A}} \mathbf{x}_{0}-\mathbf{b}$
- $\mathbf{p}_{0}=-\mathbf{r}_{0}$
- for $k=0, \ldots, K-1$ do

$$
\begin{aligned}
& \mathbf{q}_{k}=\widehat{\mathbf{A}} \mathbf{p}_{k} \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}+\alpha_{k} \mathbf{q}_{k} \\
& \mathbf{p}_{k+1}=-\mathbf{r}_{k+1}+\beta_{k+1} \mathbf{p}_{k}
\end{aligned}
$$

- end for

Convergence properties of Cl as a function of M and $\alpha \quad \Sigma$ CERFACS

$$
\kappa=\operatorname{diag}\left(\kappa_{\mathbf{1}}, \kappa_{\mathbf{2}}\right) \quad \text { where } \quad \kappa_{i}=\frac{1}{2(M-2)} D_{i}^{2} \quad \text { and } \quad D_{i}=\alpha e_{i}
$$

- Cl and CG have very similar convergence properties for the elliptic problem under consideration, which is reasonably well conditioned.

$$
\lambda_{\min } \approx 1 \text { and } \lambda_{\max } \approx 1+\left(\frac{\kappa_{1}}{e_{1}^{2}}+\frac{\kappa_{2}}{e_{2}^{2}}\right) \approx 1+\frac{4 \alpha^{2}}{M-2}
$$

CNA-2016 : Colloque National d'Assimilation de Données 2016, Grenoble, 30 novembre - 2 décembre 2016

Examples from a global-ocean VDA system

Correlations at selected points with $M=10$ and $\alpha=5$.

(From Weaver et al. 2016)

- For this system, $\lambda_{\min } \approx 1$, so only $\lambda_{\max }$ needs to be estimated.
- Underestimating $\lambda_{\text {max }}$ causes the algorithm to diverge.
- Overestimating $\lambda_{\max }$ slows convergence.

(From Weaver et al. 2016)
CNA-2016 : Colloque National d'Assimilation de Données 2016, Grenoble, 30 novembre - 2 décembre 2016

Correlation structures as a function of iteration counter for $\mathrm{CI} £$ CERFACS

- We don't need a strict convergence criterion to get an adequate solution.

".

(c) $K=2\left(\epsilon_{k}=0.3\right)$

(e) $K=9\left(\epsilon_{k}=10^{-2}\right)$
(f) $K=13\left(\epsilon_{k}=10^{-3}\right)$
(g) $K=43\left(\epsilon_{k}=10^{-10}\right)$
(From Weaver et al. 2016)
CNA-2016 : Colloque National d'Assimilation de Données 2016, Grenoble, 30 novembre - 2 décembre 2016

Initialization: Consider $\widehat{\mathbf{A}} \mathbf{x}=\mathbf{b}$ with \mathbf{b} set to a random vector.

- Step 1: Use CG combined with a Lanczos procedure to estimate the eigenvalue bounds of $\widehat{\mathbf{A}}$.
- Step 2: Use Cl with the eigenvalue bounds computed from Step 1 to diagnose the number of Chebyshev iterations needed to satisfy a desired solver precision.

Application within the correlation operator, $\mathrm{C}=\mathbf{U} \mathbf{U}^{\mathrm{T}}$:

- Step 3: Use CI (and its adjoint), with the eigenvalue bounds from Step 1 and the number of Chebyshev iterations fixed from Step 2.

Scalability

NEMOVAR 3D-Var analysis, with full 3D diffusion-based correlation operator, for $1 / 4^{\circ}$ global ocean model (NEMO ORCA025 configuration).

(Courtesy M. Chrust, ECMWF)

CNA-2016 : Colloque National d'Assimilation de Données 2016, Grenoble, 30 novembre - 2 décembre 2016

Outline

(1) Motivation and background
(2) Implicit diffusion using polynomial-based iterative solution methods
(3) Ongoing and future developments

- Significant progress has been made in NEMOVAR:
(1) in making the diffusion-based correlation model more general and flexible;
(2) in improving computational aspects of the algorithm (Chebyshev iteration).
- Nevertheless, further improvements are needed, especially to reduce the computational cost for future applications with higher resolution global models ($1 / 12^{\circ}$) and a hybrid \mathbf{B}.
- Recall that the condition number of $\widehat{\mathbf{A}} \sim \kappa_{i} / e_{i}^{2}$:
high-resolution $=>$ small e_{i}
large localization scales $=>$ large κ_{i}
- Mixture of single and double precision. (M. Chrust)
- "Time"-parallel diffusion. (S. Gürol)
- Coarse-resolution grid and transfer operators for treating correlations with "large" length scales. (A. Vidard)
- Restricted Additive Schwarz preconditioner, with coarse grid solver. (M. Chrust)
- Improved algorithms for estimating normalization factors. (B. Ménétrier)

Ongoing and future developments

- Mixture of single and double precision. (M. Chrust)
- "Time"-parallel diffusion. (S. Gürol)
- Coarse-resolution grid and transfer operators for treating "large" length-scale correlations. (A. Vidard).
- Restricted Additive Schwarz preconditioner, with coarse grid solver. (M. Chrust)
- Improved algorithms for estimating normalization factors. (B. Ménétrier)
- Rewrite the sequence of M symmetric linear systems as a single nonsymmetric linear system:
- This has the form $\mathcal{A} \psi=\zeta$ where

$$
\mathcal{A}=\left[\begin{array}{cccc}
\mathbf{A} & & & \\
-\mathbf{I} & \mathbf{A} & & \\
& \ddots & \ddots & \\
& & -\mathbf{I} & \mathbf{A}
\end{array}\right], \quad \psi=\left[\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{M}
\end{array}\right], \quad \zeta=\left[\begin{array}{c}
\psi_{0} \\
0 \\
\vdots \\
\mathbf{0}
\end{array}\right]
$$

- \mathcal{A} and \mathbf{A} have the same eigenspectrum.
- We can solve the nonsymmetric system using the Cl .
- The advantage of the \mathcal{A} system is that the \mathbf{A}-matrix operators can be applied in parallel on each iteration of Cl .
- Define "run-time cost" as the number of sequential A-matrix products.
- The red crosses and blue circles show the total number of \mathbf{A}-matrix products required to achieve a residual reduction of 10^{-4} for the symmetric and nonsymmetric systems, for experiments with different values of M.
- The violet circles represent the potential gain from "time" parallelism.

