

Corrélations spatiales des erreurs d'observation : l'approche Lanczos

Y. Michel⁽¹⁾ et S. Guedj⁽²⁾
⁽¹⁾ CNRM UMR 3589, Météo-France & CNRS, Toulouse, France
⁽²⁾ JCSDA, College Park, MD, USA.
CNA, Grenoble, France – mercredi 30 novembre 2016

Introduction : la formulation Bayésienne

L'assimilation de données recherche l'état x le plus probable de l'atmosphère étant donné une ébauche x^b et des observations y.

- Règle de Bayes:

 $\mathrm{P}(\bm{x}|\bm{y}) \propto \mathrm{P}(\bm{y}|\bm{x}) \mathrm{P}(\bm{x})$

Dans le cadre Gaussien, ces densités de probabilité s'écrivent:

$$P(\mathbf{x}) \propto e^{-\frac{1}{2}[\mathbf{x}-\mathbf{x}^b]^{\mathsf{T}}\mathbf{B}^{-1}[\mathbf{x}-\mathbf{x}^b]}$$

$$\mathrm{P}(\mathbf{y}|\mathbf{x}) \propto e^{-rac{1}{2}[\mathbf{y}-\mathcal{H}(\mathbf{x})]^{\mathsf{T}}\mathbf{R}^{-1}[\mathbf{y}-\mathcal{H}(\mathbf{x})]}$$

où:

- x^b est le vecteur d'ébauche, de matrice de covariance d'erreur B ;
- y est le vecteur d'observations, de matrice de covariance d'erreur R ;
- \mathcal{H} est l'opérateur d'observation.

L'équivalence variationnelle

On obtient l'analyse \mathbf{x}^a en recherchant le mode de $P(\mathbf{x}|\mathbf{y})$.

- La formulation variationnelle vise à minimiser la fonction de coût:

$$J(\mathbf{x}) = -\log P(\mathbf{x}|\mathbf{y})$$

= $\underbrace{\frac{1}{2}(\mathbf{x} - \mathbf{x}^{b})^{\mathsf{T}} \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^{b})}_{J_{b} \text{ fcart à l'ébauche}} + \underbrace{\frac{1}{2}(\mathbf{y} - \mathcal{H}(\mathbf{x}))^{\mathsf{T}} \mathbf{R}^{-1}(\mathbf{y} - \mathcal{H}(\mathbf{x}))}_{J_{o} \text{ fcart aux observations}}$

– Gradient conjugué préconditionné pour résoudre $\nabla J = 0$.

Problème primal

$$\left[\mathbf{B}^{-1} + \mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\right]\delta\mathbf{x} = \mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{d}$$

- Préconditionnement "split" $\mathbf{v} = \mathbf{B}^{-\frac{1}{2}} \delta \mathbf{x}$
- Préconditionnement à droite, **B**-produit scalaire [Derber, J. and A. Rosati, 1989]
- RPCG [Gratton et Tshimanga, 2009].

Problème dual

$$\left[\mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}}\right]\mathbf{w} = \mathbf{d}$$

• Préconditionnement "split" [Courtier, P. (1997)], $\mathbf{u} = \mathbf{R}^{\frac{1}{2}}\mathbf{w}$

Introduction : R

- Dans les systèmes opérationnels de PNT, **R** est essentiellement diagonale.
- Cela contribue au sous-échantillonnage massif des observations dans les schémas d'assimilation.
- Exemple : les données MSG/SEVIRI dans AROME

Contexte

- \mathbf{R}^{-1} intervient dans l'expression du gradient.
- **R** (et **R**⁻¹) peuvent raisonnablement pris sous forme diagonale par blocs ; chaque bloc correspondant à un instrument indépendant.
- Malgré cette simplification, des grandes dimensions :

SEVIRI Une image du globe fait $p \sim 3712^2 \sim 10^7$; $p \sim 4 \cdot 10^5$ pour AROME. RADAR Une élévation d'un radar donne $p \sim 512^2 = 2 \cdot 10^5$.

Contexte

- \mathbf{R}^{-1} intervient dans l'expression du gradient.
- **R** (et **R**⁻¹) peuvent raisonnablement pris sous forme diagonale par blocs ; chaque bloc correspondant à un instrument indépendant.
- Malgré cette simplification, des grandes dimensions :

SEVIRI Une image du globe fait $p \sim 3712^2 \sim 10^7$; $p \sim 4 \cdot 10^5$ pour AROME. RADAR Une élévation d'un radar donne $p \sim 512^2 = 2 \cdot 10^5$.

Approches envisagées

- L'équation de diffusion résolue par éléments finis [Lindgren et. al 2011].
- Modélisation de **R** par opérateurs et estimation de l'inverse par la méthode de Lanczos [Fisher 2014].

Contexte - II

- La modélisation des corrélations intercanaux (avec une méthode directe, i.e. factorisation de Choleski) s'est montrée bénéfique pour les canaux infrarouges des sondeurs hyperspectraux [Weston et.al 2014];
- Estimation de **R** possible avec les diagnostiques de [Desroziers et. al 2005].
- Des progrès récents pour les radiances SEVIRI et les données de vent par radar Doppler [Waller et. al 2016].

Contexte - II

- La modélisation des corrélations intercanaux (avec une méthode directe, i.e. factorisation de Choleski) s'est montrée bénéfique pour les canaux infrarouges des sondeurs hyperspectraux [Weston et.al 2014];
- Estimation de **R** possible avec les diagnostiques de [Desroziers et. al 2005].
- Des progrès récents pour les radiances SEVIRI et les données de vent par radar Doppler [Waller et. al 2016].

Objectifs

Evaluer l'approche proposées par [Fisher 2014]:

- dans le contexte de la PNT à échelle convective (AROME) ;
- pour les données SEVIRI et RADAR.

Estimation des corrélations spatiales dans R

Modélisation de R par opérateurs

Inverse approché par la méthode de Lanczos

Estimation des corrélations spatiales dans R : SEVIRI

Suivant [Desroziers et. al 2005]:

 $\mathbf{R} \approx \mathbb{E}(\mathbf{d}_{a}\mathbf{d}_{b}^{\mathsf{T}})$

Les correlations sont estimées à partir d'une moyenne (ou médiane) temporelle.

Figure : Application du diagnostique de Desroziers diagnostic au canal vapeur d'eau $6.2\mu m$ de SEVIRI

Estimation des corrélations spatiales dans R : RADAR

[Waller et. al 2016]

Estimation des corrélations spatiales dans R

Modélisation de R par opérateurs

Inverse approché par la méthode de Lanczos

Modélisation de R par opérateurs

[Fisher 2014] a proposé le modèle suivant :

 $\mathbf{R} = \mathbf{U}\mathbf{U}^\mathsf{T}$

où **U** est une séquence d'opérateurs :

$$\mathbf{U} = \mathbf{\Sigma}_{\mathbf{o}} \mathbf{P} \mathbf{S}^{-1} \mathbf{D} \mathbf{S}$$

avec :

- **S**⁻¹**DS** un modèle de corrélation spectral ;
- P est l'interpolation depuis une grille régulière aux localisations des observations;
- Σ_o est la multiplication par les écarts-types d'erreur.

Modélisation de R par opérateurs

[Fisher 2014] a proposé le modèle suivant :

 $\mathbf{R} = \mathbf{U}\mathbf{U}^{\mathsf{T}}$

où ${f U}$ est une séquence d'opérateurs :

$$\mathbf{U} = \mathbf{\Sigma}_{\mathbf{o}} \mathbf{P} \mathbf{S}^{-1} \mathbf{D} \mathbf{S}$$

avec :

- **S**⁻¹**DS** un modèle de corrélation spectral ;
- P est l'interpolation depuis une grille régulière aux localisations des observations;
- Σ_o est la multiplication par les écarts-types d'erreur.

Note :

- la grille régulière peut être de résolution grossière ;
- pas besoin de couvrir le domaine de l'analyse toute entière ;
- possibilité de prendre un modèle de corrélations en points de grille.

- Grille grossière couvrant le domaine AROME, à 10 km de résolution spatiale (240 × 256 points).
- Utilisation de filtres récursifs hyperGaussiens ($\sigma = 60\,$ km, $\gamma = 5$, Purser et. al 2003b).

- Grille couvrant seulement le radar.
- Convolution de filtres récursifs unidimensionnels ;
- Périodique en azimuth, non-périodique dans la direction radiale.

Fig: Corrélations spatiales modélisées dans R.

Fig: Corrélations spatiales modélisées dans R.

Fig: Corrélations spatiales modélisées dans R.

Estimation des corrélations spatiales dans R

Modélisation de R par opérateurs

Inverse approché par la méthode de Lanczos

Une approximation de rang réduit de **R** peut être obtenue par l'algorithme de Lanczos :

$$\mathbf{R} \approx \mathbf{\Sigma}_o \left(\sum_{k=1}^K \lambda_k \mathbf{v}_k \mathbf{v}_k^\mathsf{T} \right) \mathbf{\Sigma}_o$$

Quand K < p, cette approximation peut être régularisée :

$$\mathbf{R} \approx \widehat{\mathbf{R}} \equiv \mathbf{\Sigma}_o \left(\alpha \mathbf{I} + \sum_{k=1}^{K} (\lambda_k - \alpha) \mathbf{v}_k \mathbf{v}_k^{\mathsf{T}} \right) \mathbf{\Sigma}_o$$

permettant l'inversion explicite :

$$\widehat{\mathbf{R}}^{-1} = \mathbf{\Sigma}_{o}^{-1} \left(\alpha^{-1} \mathbf{I} + \sum_{k=1}^{K} (\lambda_{k}^{-1} - \alpha^{-1}) \mathbf{v}_{k} \mathbf{v}_{k}^{\mathsf{T}} \right) \mathbf{\Sigma}_{o}^{-1}$$

Le paramètre de régularisation α peut être choisi pour conserver la trace totale :

$$\operatorname{Tr}[\mathbf{R}] = \operatorname{Tr}[\widehat{\mathbf{R}}] \Longrightarrow \alpha = \frac{p - \sum_{k=1}^{n} \lambda_k}{p - K}$$

Le paramètre de régularisation α peut être choisi pour conserver la trace totale : ∇^{κ}

$$\operatorname{Tr}[\mathbf{R}] = \operatorname{Tr}[\widehat{\mathbf{R}}] \implies \alpha = \frac{p - \sum_{k=1}^{n} \lambda_k}{p - K}$$

Le paramètre de régularisation α peut être choisi pour conserver la trace totale : ∇^{κ}

$$\mathsf{Tr}[\mathbf{R}] = \mathsf{Tr}[\widehat{\mathbf{R}}] \implies \alpha = \frac{p - \sum_{k=1}^{n} \lambda_k}{p - K}$$

Effets de la troncature - RADAR

Une troncature de l'ordre de $K = O(100) \ll p = 10^5$ peut suffire. Quels effets détrimentaux sur les covariances modélisées ?

K = 500K = 100K = 5046% 46°N 46°N 45°30'N 45°30' 45°30'N 45°30'N 45°N 45°N 45°N 44°30'N 44°30' 44°30'N 14°30'N 44°30'N 44°N 44°N 44°N 43°30'N 43930 43°30'N 43°30'N 0°30'E 0°30'E

Corrélations spatiales

 \Rightarrow Corrélations erronées à longue distance.

Effets de la troncature - RADAR

Une troncature de l'ordre de $K = O(100) \ll p = 10^5$ peut suffire. Quels effets détrimentaux sur les covariances modélisées ?

K = 500K = 100K = 5046°N 45°30'N 45*30*6 45°N 44°30'N 14°30'N 44°30'N 44°N 44% 43°30' 43930 43*30'N 43°301N

Variances

 \Rightarrow Erreurs sur les variances dans les zones de bord.

Estimation : d'après les diagnostiques de Desroziers, les données SEVIRI et RADAR sont corrélées spatialement.

- Modelling : nous pouvons construire un modèle statistique et numérique pour représenter ces corrélations spatiales, utilisant uniquement des opérateurs.
 - Inverse : L'utilisation de l'algorithme de Lanczos [Fisher 2014]...
 - requiert un nombre important de vecteurs propres (*e.g.*, 500).
 - introduit des corrélations erronées à longue distance / affecte les variances si la troncature est trop sévère.

mais demeure une option intéressante en PNT.

References I

Courtier, P. (1997)

Dual formulation of four-dimensional variational assimilation.

Q.J.R. Meteorol. Soc., 123, 2449-2461

Derber, J. and A. Rosati, 1989 A Global Oceanic Data Assimilation System *J. Phys. Oceanogr.*, **19**, 1333-1347.

Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005)

Diagnosis of observation, background and analysis-error statistics in observation space.

Q.J.R. Meteorol. Soc., 131, 3385-3396.

M. Fisher, 2014.

Accounting for Correlated Observation Error in Variational Data Assimilation. ESA workshop on correlated observation errors in Data Assimilation, April 24th, 2014.

References II

S. Guedj, V. Guidard, B. Ménétrier and J.-F. Mahfouf (2014)

First estimates of observation error correlations for the future assimilation of MTG-IRS radiances.

ESA workshop on correlated observation errors in Data Assimilation, April 24th, 2014.

Lindgren, F., Rue, H. and Lindström, J. (2011)

An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), **73**: 423-498.

Gratton, S. and Tshimanga, J.

An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm.

Q.J.R. Meteorol. Soc., 135, 1573-1585.

J. A. Waller, D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard (2016)

Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics.

Monthly Weather Review.

Weston, P. P., Bell, W. and Eyre, J. R. (2014)

Accounting for correlated error in the assimilation of high-resolution sounder data.

Q.J.R. Meteorol. Soc., 140, 2420-2429